Optimal timing of an invasive strategy in patients with non-ST-elevation acute coronary syndrome: a meta-analysis of randomised trials

Summary

Background A routine invasive strategy is recommended for patients with non-ST-elevation acute coronary syndromes (NSTE-ACS). However, optimal timing of invasive strategy is less clearly defined. Individual clinical trials were underpowered to detect a mortality benefit; we therefore did a meta-analysis to assess the effect of timing on mortality.

Methods We identified randomised controlled trials comparing an early versus a delayed invasive strategy in patients presenting with NSTE-ACS by searching MEDLINE, Cochrane Central Register of Controlled Trials, and Embase. We included trials that reported all-cause mortality at least 30 days after in-hospital randomisation and for which the trial investigators agreed to collaborate (ie, providing individual patient data or standardised tabulated data). We pooled hazard ratios (HRs) using random-effects models. This meta-analysis is registered at PROSPERO (CRD42015018988).

Findings We included eight trials (n=5324 patients) with a median follow-up of 180 days (IQR 180–360). Overall, there was no significant mortality reduction in the early invasive group compared with the delayed invasive group HR 0.81, 95% CI 0.64–1.03; p=0.0879). In pre-specified analyses of high-risk patients, we found lower mortality with an early invasive strategy in patients with elevated cardiac biomarkers at baseline (HR 0.761, 95% CI 0.581–0.996), diabetes (0.67, 0.45–0.99), a GRACE risk score more than 140 (0.70, 0.52–0.95), and aged 75 years older (0.65, 0.46–0.93), although tests for interaction were inconclusive.

Interpretation An early invasive strategy does not reduce mortality compared with a delayed invasive strategy in all patients with NSTE-ACS. However, an early invasive strategy might reduce mortality in high-risk patients.

Funding None.

Introduction Guidelines for the management of patients with non-ST-elevation acute coronary syndromes (NSTE-ACS) recommend an invasive strategy in moderate to high-risk patients.1,2 Recommendations for the timing of intervention in these patients depend on patient’s baseline risk. Immediate coronary angiography within 2 h of presentation is recommended for all patients with a very high risk of in-hospital mortality (ie, those with haemodynamic instability, life-threatening arrhythmia, or recurrent or refractory angina); the recommendation is based on expert opinion without any evidence from clinical trials. Coronary angiography within 24 h is advised for patients not meeting these criteria but presenting with elevated troponin or ischaemic ST-wave or T-wave changes as well as patients with a Global Registry of Acute Coronary Events (GRACE) risk score of more than 140 points. The recommendation is primarily based on a pre-specified subgroup analysis of the TIMACS trial,3 in which the early invasive strategy was superior to the delayed invasive strategy with regard to the composite endpoint of death, myocardial infarction, or stroke at 6 months in the highest GRACE risk score tertile. However, the effect of an early invasive strategy on individual clinical endpoints such as mortality or non-fatal myocardial infarction is unknown; individual trials were underpowered to detect an effect on these outcomes.

Moreover, previous meta-analyses pooling published data did not detect a difference on these outcomes. Only recurrent or refractory ischaemia and length of hospital stay have been shown to be improved by an early invasive strategy compared with a delayed invasive strategy.4,5 Because of inconsistent trial reporting, no subgroup analyses of high-risk patients were possible in these meta-analyses.

To overcome shortcomings of conventional meta-analyses, we did a collaborative meta-analysis of randomised controlled trials investigating optimal timing of coronary angiography in patients with NSTE-ACS, based on individual patient or standardised tabulated data not previously published. We analysed all-cause mortality overall and in four pre-specified high-risk subgroups.
Evidence before this study

Guidelines for the timing of coronary angiography in non-ST-elevation acute coronary syndromes (NSTE-ACS) are based on results of individual randomised controlled trials and several meta-analyses. However, individual trials were underpowered to detect an effect on mortality. The meta-analyses were methodologically limited by their use of published data, which precluded subgroup analyses because of inconsistent trial reporting.

Added value of this study

We did a collaborative meta-analysis of published and unpublished trial data from studies of the timing of coronary angiography in NSTE-ACS. Our results accord with findings from previous meta-analyses that an early invasive strategy is not superior to a delayed invasive strategy in unselected patients with NSTE-ACS. Because our meta-analysis is based on individual patient data or standardised tabulated data, we were for the first time able to analyse high-risk subgroups. We found that an early invasive strategy might be associated with reduced mortality in high-risk patients (ie, patients with elevated cardiac biomarkers at baseline, diabetes, a GRACE risk score more than 140 points, or age ≥75 years).

Implications of all the available evidence

Our findings, particularly concerning high-risk patients, strengthen guideline recommendations to use an early invasive approach in patients with elevated biomarkers compatible with myocardial infarction or in patients with a GRACE risk score of more than 140 points. In addition, our results might indicate the need for an early invasive strategy for older patients or patients with diabetes.

Methods

Search strategy and selection criteria

We identified randomised controlled trials (RCTs) of potential interest by searching MEDLINE (up to Dec 20, 2016), Cochrane Central Register of Controlled Trials (up to Dec 21, 2016), and Embase (up to Jan 2, 2017), without language restrictions. We used three groups of search terms, of which at least one term in each was required to match: (1) “acute coronary syndrome”, “unstable coronary syndrome”, “unstable angina”, “without persistent ST-segment elevation”, “non-ST-elevation acute coronary syndrome”, “non-ST-elevation myocardial infarction”, “NSTE-ACS”, and “NSTEMI”; (2) “angiography”, “intervention”, “invasive evaluation”, and “invasive intervention”; (3) “timing”, “early”, “immediate”, “late”, and “delayed” (see appendix for specific search strategies).

We included randomised controlled trials comparing an early versus delayed coronary angiography in patients presenting with NSTE-ACS, reporting mortality at least 30 days after in-hospital randomisation, and for which the principal investigators agreed to provide data for patient characteristics (demographics, medical history, baseline risk evaluation, and procedural data) and outcomes as individual patient data or tabulated data on standardised table sheets in an ordinary spreadsheet format with uniform coding. In case of tabulated data, table sheets were prepared to ensure that the provided data facilitated pre-specified analyses. We excluded randomised controlled trials with pre-hospital randomisation and those comparing a routine invasive strategy with a selective invasive strategy or early versus delayed percutaneous coronary intervention.

Data analysis

After removal of duplicates, title and abstract of search items were screened and sequentially excluded according to the eligibility criteria (by AJ). Whenever uncertainty remained after screening title and abstract, full-text articles were scrutinised independently by two investigators (SD and HT) and discrepancies resolved by consensus after discussion. Provided data were centrally checked for completeness, plausibility, and integrity before they were combined in a single database.

Two independent investigators assessed the risk of bias in the included trials (AJ and SD) according to the Cochrane Collaboration’s tool for assessing risk of bias using primarily original trial reports. Discrepancies were resolved by consensus after discussion. Principal investigators were contacted in case of missing information.

The primary outcome was all-cause mortality. To investigate a time-dependent effect of timing of invasive strategy, we divided the follow-up into distinct periods (ie, from randomisation to hospital discharge, and from hospital discharge to end of follow-up). Moreover, we analysed the effect of timing in four pre-defined high-risk subgroups (ie, patients with positive cardiac biomarkers at baseline, with diabetes, aged ≥75 years, or with a GRACE risk score >140 points). The secondary outcome was non-fatality myocardial infarction. The definitions of non-fatal myocardial infarction differed considerably between trials and each trial definition was used for the present meta-analysis (appendix).

We analysed data by the intention-to-treat principle. We summarised baseline characteristics by treatment group as mean and SD, or if skewed, as median and IQR. We used frequencies and percentages to summarise categorical variables. Under the assumption that hazard rates are constant over time, HRs are more reliable for pooling data of trials with different durations of follow-up. Therefore, we used HRs with 95% CIs for both outcomes. Clinical events were considered as in-hospital events when they occurred between randomisation and
hospital discharge or as post-discharge events if they occurred between hospital discharge and the end of follow-up. Analysis of post-discharge events excludes patients who died before discharge. Trials without clinical events or only few events resulting in infinite HRs were weighted with zero. We used a two-step approach for the meta-analysis to preserve clustering of patients in trials. All trials were analysed separately and respective principal investigators were asked to confirm the results. Discrepancies were resolved by discussion. We obtained individual patient data for ABOARD, ELISA, ELISA-3, ISAR-COOL, LIPSIA-NSTEMI, Sciahsbasi et al., and RIDDLE-NSTEMI, which we analysed centrally. Because of legal issues, TIMACS provided standardised tabulated data compatible with the pre-specified central analysis of other trials. For each outcome, we pooled HRs using inverse variance weighting and calculated DerSimonian and Laird random-effects models since all trials were done independently and we assumed that clinical heterogeneity will be present even despite a negative Cochrane’s Q statistic. We assessed heterogeneity between trials using I^2 as measure of between-study variance and Higgins’ and Thompson’s Ψ. We evaluated interactions in subgroups by I^2 provided standardised tabulated data. CK-MB=creatine kinase–myocardial band. ECG=electrocardiograph. GRACE=Global Registry of Acute Coronary Events. IPD=trial provided individual patient data. ULN=upper limit of normal.

Table 1: Key features of includes trials

Figure 1: Trial selection

between the median difference in time to angiography and outcomes. All analyses were pre-specified unless otherwise stated. All p values were two-sided and judged as significant if less than 0.05. We used R (version 3.1.0) and its package meta (version 4.3.2) for all statistical analyses.
Table 2: Continued

<table>
<thead>
<tr>
<th>Tests</th>
<th>Early</th>
<th>Delayed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABOARD®</td>
<td>175</td>
<td>177</td>
<td>109</td>
<td>111</td>
<td>269</td>
<td>265</td>
<td>203</td>
<td>207</td>
<td>200</td>
<td>200</td>
<td>162</td>
<td>161</td>
<td>77</td>
<td>77</td>
<td>1583</td>
<td>1438</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA®</td>
<td>30</td>
<td>30</td>
<td>373</td>
<td>371</td>
<td>732</td>
<td>732</td>
<td>360</td>
<td>360</td>
<td>180</td>
<td>180</td>
<td>365</td>
<td>365</td>
<td>365</td>
<td>365</td>
<td>184</td>
<td>184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELISA-3®</td>
<td>63</td>
<td>65</td>
<td>63</td>
<td>65</td>
<td>71</td>
<td>70</td>
<td>68</td>
<td>69</td>
<td>66</td>
<td>68</td>
<td>60</td>
<td>62</td>
<td>57</td>
<td>59</td>
<td>65</td>
<td>66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIPSIA-NSTEMI®</td>
<td>732</td>
<td>732</td>
<td>360</td>
<td>360</td>
<td>180</td>
<td>180</td>
<td>365</td>
<td>365</td>
<td>365</td>
<td>365</td>
<td>184</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scali and colleagues</td>
<td>1583</td>
<td>1438</td>
<td>365</td>
<td>365</td>
<td>365</td>
<td>365</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Men

Age (years)	127	125	79	76	187	174	134	140	132	139	114	106	22	24	1038	940
Diabetes	38	57	16	16	64	54	53	65	77	86	35	52	5	7	422	394
Smoking (n/N)	56/175	50/177	40/109	36/110	57/269	52/214	50/216	49/203	57/200	52/198	84/164	62/161	16	12/7	441/5593	394/438
Previous myocardial infarction	28	33	19	14	48	52	44	52	36	47	31	34	0	0	313	300
Previous PCI	43	54	16	14	49	55	42	48	33	32	17	15	0	0	221	204
Previous CABG	9	12	12	8	37	32	20	28	10	15	8	12	0	0	111	105
Biomarker elevation	132	129	66	55	211	210	134	140	200	200	162	161	19	22	1245	110
ST-T segment changes	122	136	NA	NA	196	182	134	124	158	163	159	160	19	20	1282	114
MedGRACE risk score (IQR)	NA	NA	NA	NA	136	133	133	137	131	129	NA	NA	NA	NA	129	129
GRACE risk score >140 (n/N, %)	NA	NA	NA	NA	119/66	121/66	85/200	96/200	NA	NA	56/162	67/161	50	50	520/1593	464/1488
Median time to randomisation (IQR, h)	20	25	23	20	20	21	NA	NA	21	25	NA	NA	80	80	NA	NA
Median time to angiography (IQR, h)	12	12	32	33	2.6	2.6	2.4	2.3	2.1	2.5	1.4	1.5	1.4	1.5	14	14
Number of diseased vessels	32	28	31	14	26	28	21	25	19	17	5	4	4	0	427	427

(Table 2 continues on next page)
This meta-analysis is registered with PROSPERO (CRD42015018988).

Role of the funding source
There was no funding source for this meta-analysis. The first author and the corresponding author had full access to all data (standardised tabulated data for TIMACS and individual patient data for all other trials). The corresponding author had final responsibility for the decision to submit for publication.

Results
Our search retrieved 2190 items, of which 433 were duplicates. After screening titles and abstracts, 26 reports of randomised controlled trials remained and were evaluated in detail. Of these, we excluded 12 trials because they compared routine versus selective invasive strategy, two trials because patients were randomised before hospital admission, one trial because patients were randomised after coronary angiography, and three trials because their principal investigators did not respond to our request. Eight trials involving 5324 patients met the eligibility criteria and were included in the meta-analysis (table 1, figure 1).

All included trials had a low risk of bias overall (appendix). Table 2 shows key design features of the included trials; table 2 shows baseline and procedural characteristics. With the exception of LIPSA-NSTEMI, all trials assigned patients to two groups. In LIPSA-NSTEMI, patients were assigned to either an immediate, early, or selective invasive strategy. We excluded patients assigned to the selective invasive group. Median follow-up was 180 days (IQR 180–360), ranging from 30 days in ABOARD to 732 days in ELISA-3. The maximum follow-up varied in ELISA and ELISA-3, depending on the time of inclusion; other trials had a fixed end of follow-up for each patient. This meta-analysis included longer follow-up than in the original reports of three trials: ELISA (372 days vs 30 days), ELISA-3 (732 days vs 30 days), and ISAR-COOL (360 days vs 30 days). During the extended follow-up period two deaths and no non-fatal myocardial infarctions occurred in ELISA, 33 deaths and 24 non-fatal myocardial infarctions occurred in ELISA-3, and 18 deaths and ten non-fatal myocardial infarctions occurred in ISAR-COOL. LIPSA-NSTEMI and RIDDLE-NSTEMI only enrolled patients with positive cardiac biomarkers (ie, NSTEMI rather than NSTE-ACS).

Three trials used a strategy of immediate (primary) percutaneous coronary intervention for the early invasive group (ABOARD, LIPSA-NSTEMI, and RIDDLE-NSTEMI), whereas for the others, the timing in the early invasive group differed by several hours, up to 24 h. The heterogeneity in timing is even more obvious for the delayed invasive group. Trials such as ABOARD and LIPSA-NSTEMI, which tested primary percutaneous coronary intervention for NSTEMI, had control groups with the fastest procedural times. Thus, there was...
considerable overlap between the fast procedural times in the delayed invasive groups of these trials and the early invasive strategy of other trials (figure 2). The remaining baseline characteristics were well-balanced between included trials and therefore allowed pooling for meta-analysis.

Data for all-cause mortality and non-fatal myocardial infarction were complete for all patients. In total, 277 (5%) of 5324 patients died during the entire follow-up period. Of these, 121 (44%) deaths occurred during in-hospital treatment and 156 (56%) occurred after hospital discharge. The assigned treatment strategy did not have a significant effect on all-cause mortality when analysing the total population (HR 0·76, 95% CI 0·52–0·99; p=0·0879; figure 4). However, pre-defined subgroup analyses suggested lower mortality in four high-risk subgroups compared with a delayed invasive strategy (HR 0·67, 95% CI 0·45–0·99; for age ≥75 years, HR 0·65, 95% CI 0·46–0·93; p=0·0369; appendix). Heterogeneity was high in all analyses of non-fatal myocardial infarction (I²=70%, and p<0·05 for heterogeneity for each period; figure 3). Treatment strategy did not have a significant effect when follow-up was divided into periods from randomisation to hospital discharge and from hospital discharge to end of follow-up (appendix). There was no evidence of heterogeneity in the outcome of mortality (I²=0% and p>0·5 for heterogeneity for each period; figure 3, appendix).

Overall, 338 (6%) of 5324 patients had a non-fatal myocardial infarction. We detected no significant difference for non-fatal myocardial infarction between an early and delayed invasive strategy during any follow-up period (HR for overall follow-up period 0·81, 95% CI 0·64–1·03; p=0·0879; figure 3). Treatment strategy did not have a significant effect when follow-up was divided into periods from randomisation to hospital discharge and from hospital discharge to end of follow-up (appendix). There was no evidence of heterogeneity in the outcome of non-fatal myocardial infarction (I²=0%, and p>0·5 for heterogeneity for each period; figure 3, appendix).

We detected no association between mortality and difference in time to angiography between the early invasive and delayed invasive group in post-hoc meta-regression analysis. We detected no significant effect among trials in which coronary angiography was done in most patients in the delayed invasive group within 24 h after randomisation; nor did we detect an effect among trials in which most patients in the delayed invasive group had coronary angiography later than 24 h after randomisation (appendix). However, we did observe a significant association in post-hoc meta-regression with regard to non-fatal myocardial infarction (appendix).

Patients with elevated cardiac biomarkers at baseline (4206 [79·0%] of 5324) had 219 (79·0%) of the 277 recorded deaths; patients with diabetes (1441 [27·1%] of 5324) had 105 (37·9%) of the 277 deaths, and patients aged 75 years or older (1282 [24·1%] of 5324) had 136 (49·1%) of the 277 deaths. Although there was no significant mortality reduction for the entire patient cohort, an early invasive strategy might be associated with lower mortality in these pre-specified high-risk subgroups compared with a delayed invasive strategy (for patients with elevated biomarkers, HR 0·76, 95% CI 0·52–0·99; for diabetes, HR 0·67, 95% CI 0·45–0·99; for age ≥75 years, HR 0·65, 95% CI 0·46–0·93; figure 4). GRACE risk score was determined prospectively in four trials (ELISA-3, LIPSIA-NSTEMI, RIDDLE-NSTEMI, and TIMACS). These trials included 4288 (80·5%) of the 5324 patients and 239 (86·3%) of the 277 deaths. Patients with a GRACE risk score of more than 140 points (1519 of 4288 patients with 173 of 239 deaths) might also benefit from an early invasive strategy compared with a delayed invasive strategy (HR 0·70, 95% CI 0·52–0·95; figure 4). However, the test for interaction was not significant in any subgroup analysis (figure 4).

Discussion

This collaborative meta-analysis is the largest and first studying the optimal timing of coronary angiography with regard to deaths in high-risk subgroups of patients with NSTE-ACS. For the entire NSTE-ACS patient cohort there was no significant mortality benefit with an early invasive strategy compared with a delayed invasive strategy. However, pre-defined subgroup analyses suggested lower mortality in four high-risk subgroups: those with elevated cardiac biomarkers at baseline, diabetes, GRACE risk score more than 140 points, and age 75 years or older, although tests for risk–treatment interactions were not statistically significant.

Previous meta-analyses showed a benefit of a routine invasive strategy over a selective invasive (or conservative) strategy in patients with NSTE-ACS with regards to a composite endpoint of death or myocardial infarction.26,27 However, optimal timing of coronary angiography is less clearly defined. Guidelines recommend an immediate invasive strategy for all unstable very high-risk patients. For all other patients, an invasive strategy within 24–72 h is recommended depending on their risk level. An early invasive strategy within 24 h is recommended for high-risk patients with positive cardiac biomarkers, dynamic ST-T changes, or a GRACE risk score more than 140 points.12 Previous meta-analyses25–27 on the timing
of coronary angiography in patients with NSTE-ACS consistently showed that an early invasive strategy is superior to a delayed invasive strategy on soft outcomes of refractory or recurrent ischaemia and length of hospital stay without an increase in adverse outcomes (ie, all-cause mortality, myocardial infarction, stroke, or bleeding).

Overall, neither treatment strategy was superior in reducing all-cause mortality or non-fatal myocardial infarction in our meta-analysis. In contrast to previous meta-analyses,4,8 we were able to categorise follow-up into distinct periods (ie, from randomisation to hospital discharge and from hospital discharge to end of follow-up). No significant effect was apparent for either outcome in any follow-up period.

Our collaborative approach using individual patient data and standardised tabulated data enabled us to explore treatment effects in pre-specified high-risk subgroups. Biomarker positive patients represented the largest subgroup, containing 79% of all patients. However, individual trials were underpowered to detect a significant effect of an early invasive strategy compared with a delayed invasive strategy on all-cause mortality in such patients. Moreover, because of inconsistent trial reporting, previous meta-analyses4,8 based on published data were unable to detect such an effect. Hence, our collaborative meta-analysis is the first to suggest a mortality benefit of an early invasive strategy compared with a delayed invasive strategy in patients with NSTEMI at baseline. In line with this, two meta-analyses including trials comparing a routine versus a selective invasive strategy showed the superiority of a routine invasive strategy in patients with NSTE-ACS at baseline. In line with this, two meta-analyses including trials comparing a routine versus a selective invasive strategy showed the priority of a routine invasive strategy with regard to composite endpoints (ie, death or myocardial infarction9 and death, myocardial infarction, or readmission to hospital9) in patients with positive biomarkers at baseline.

The guidelines recommendation of performing coronary angiography within 24 h in patients with GRACE scores of more than 140 points is based on a pre-specified subgroup analysis of the TIMACS trial. Only patients in the highest GRACE score tertile benefited from an early invasive strategy compared with a delayed invasive strategy regarding the composite endpoint of death, myocardial infarction, or stroke.1 Four of eight trials included in our meta-analysis prospectively calculated the GRACE risk score. Under these caveats, an early invasive strategy might be associated with lower mortality than a delayed invasive strategy in this high-risk group.

11–5% of patients in the ACOS registry20 and 25–0% in the Euroheart acute coronary syndrome survey were older than 75 years.20 Compared to these registries, patients older than 75 years were well represented in our meta-analysis (1282 [24–1%] of 5325 patients) and accounted for almost half of deaths. Coronary angiography was less often done in older patients in different registries20,21 but registry data suggest that a routine invasive strategy is also beneficial in these patients.20,22 Our meta-analysis supports this observation, suggesting that patients aged older than 75 years assigned to the early invasive group might have lower mortality. No direct information in this population was available regarding frailty, which is strongly and independently associated with in-hospital mortality and 30-day mortality.23

In a pooled analysis of the TIMI study group trials, 3457 (28–8%) of 12002 patients with NSTE-ACS had diabetes. These patients had an increased risk for mortality at 30 days and at 1 year.24 Patients with diabetes and pre-diabetes were also at increased risk of death in other studies;25,26 therefore, the presence of diabetes identifies a high-risk subgroup of patients with NSTE-ACS. The proportion of patients in our meta-analysis who had diabetes (27–1%) is close to that of the pooled TIMI trial analysis. Even though guidelines do not recommend basing the timing of coronary angiography on diabetes status and diabetes status is not a parameter...
of the GRACE risk score, an early invasive strategy might be associated with lower mortality than a delayed invasive strategy in patients with diabetes.

Although the timing of coronary angiography might reduce mortality, a routine invasive strategy compared with a selective invasive strategy did not.21,22 However, a routine invasive strategy reduced the composite endpoint of all-cause mortality or non-fatal myocardial infarction, predominantly in high-risk patients.21,23 High-risk characteristics were more common in the present analysis than in previous reports (eg, elevated biomarkers at baseline 79% vs 55%; diabetes 24% vs 18%). Accumulation of these risk factors might shift patients to benefit from routine invasive or early invasive strategy for NSTE-ACS.23 From a pathophysiological point of view, an early invasive strategy might limit infarct size, as in ST-elevation myocardial infarction, and reduce inflammation and other systemic stress responses. This might explain the suggested mortality benefit in high-risk subgroups in our meta-analysis.

The following limitations should be acknowledged. First, TIMACS contributed 56.9% of patients and 58.8% of deaths to our meta-analysis. Therefore, the statistical weight to the calculated models of TIMACS ranged between 43% and 84% for all mortality analyses. However, TIMACS alone was underpowered to detect differences in mortality. Second, timing of coronary angiography for the early invasive and delayed invasive groups varied between included studies. Although median time to angiography in the early invasive group was less than 3 h for most trials, it was 14 h for TIMACS. Moreover, the difference between early invasive and delayed invasive group was more than 24 h for all trials besides ABOARD and LIPSIA-NSTEMI. Our meta-regression analysis did not reveal a significant association with mortality for the difference in time to coronary angiography in the early invasive and delayed invasive groups although such an effect was detected on non-fatal myocardial infarction. Third, coronary angiography was almost always performed within 24 h of randomisation in all trials, which could have masked detection of myocardial re-infarction due to already elevated cardiac biomarkers. Therefore, this outcome might be underdiagnosed. Fourth, tests for interaction were negative in all subgroup analyses. The significant HR within these high-risk strata should therefore be interpreted as exploratory and hypothesis-generating.

Fifth, different biomarkers and assays were used to interpret as exploratory and hypothesis-generating. These choices might explain the suggested mortality benefit in high-risk subgroups in our meta-analysis. The significant HR within these high-risk strata should therefore be interpreted as exploratory and hypothesis-generating. These choices might explain the suggested mortality benefit in high-risk subgroups in our meta-analysis.

Figure 4: Mortality after an early invasive strategy versus a delayed invasive strategy in different subgroups (A) Patients with or without elevated cardiac biomarkers at baseline, (B) patients aged <75 years or ≥75 years, (C) patients with or without diabetes, (D) patients with GRACE risk score ≤140 or >140. Size of data markers indicates weight of study in the pooled analysis. HR=hazard ratio.
standard in Europe. These assays shift some patients with NSTE-ACS from unstable angina to NSTEMI. Use of high-sensitive troponin assays does not much change risk prediction by GRACE score. Therefore, it is highly probable that results of our meta-analysis will also apply in the high-sensitive troponin era. In general, biomarker positive patients are a high-risk subgroup vulnerable to cardiovascular events. Sixth, three eligible trials were not included since the respective principal investigators did not respond to our request. However, these trials were only small and their quality difficult to assess.

In conclusion, an early invasive strategy was not associated with a significant mortality reduction compared with a delayed invasive strategy in the overall NSTE-ACS population. However, an early invasive strategy might be beneficial in four pre-defined high-risk subgroups. Since this finding is exploratory in nature, a pragmatic large-scale confirmatory trial would be needed to obtain definitive evidence of whether an early invasive strategy is beneficial compared with a delayed invasive strategy in these high-risk subgroups.

Contributors
AJ had the idea for and designed the study, did the systematic review, collected and analysed data, and wrote the Article. SRM, GM, EV, AWjH, EAB, F-jN, AK, and AS designed the study, extracted data, and revised the Article. P-GR and FL revised the Article. AM, GS, and DM extracted data and revised the Article. RV designed the study and revised the Article. SD collected and analysed data, and revised the Article. HT collected and analysed data, and wrote the Article.

Declaration of interests
We declare no competing interests.

References

