Affordability and Real-world Antiplatelet Treatment Effectiveness After Myocardial Infarction Study

Tracy Y. Wang, MD, MHS, MSc, FACC, FAHA

presenting on behalf of ARTEMIS Investigators

ARTEMIS 🟹

Affordability and Real-world antiplatelet Treatment Effectiveness after Myocardial Infarction Study

Guidelines – DAPT after ACS

Duke Clinical Research Institute

2016 ACC/AHA Guideline Focused Update on Duration of Dual Antiplatelet Therapy 2015/2017 ESC Guidelines for the Management of Acute Coronary Syndrome and STEMI

P2Y₁₂ Inhibitor Use and Persistence in the US

ARTEMIS 🖾

Duke Clinical Research Institute

Among post-MI patients in the US:

- Clopidogrel is the most commonly prescribed P2Y₁₂ inhibitor
- 30-60% of patients stop P2Y₁₂
 inhibitor treatment within 1 year
- Affordability thought to be a key factor for both

Basra S. et al, *NCDR data 2013-2015, AHA QCOR 2016* Czarny MJ et al, *Clin Cardiol 2014,* Fosbol EL et al, *Cath Cardiovasc Interv 2016*

By reducing and equalizing the out-of-pocket cost for generic and brand antiplatelet agents

- Antiplatelet medication choice will be driven more by evidence than patient affordability
- Patients will be more likely to complete 1 year of therapy as recommended by practice guidelines
- Improved persistence to P2Y₁₂ inhibitor therapy will lead to better clinical outcomes

ARTEMIS Sites

Top 10 Enrolling Sites

ARTEMIS 🖾

Reid Hospital (Z. Mirza) University of Massachusetts (N. Kakouros) Regions Hospital (W. Nelson) Spectrum Health (R. McNamara) Winchester Medical Center (J. Call) Indiana University (A. Ferguson) Norton Cardiovascular (V. Panchal) Hudson Valley Heart Center (L. Kantaros) Iowa Heart Center (M. Tannenbaum) Rockford Cardiovascular (A. Sheikh)

Study Design

ARTEMIS 🖾

*Randomization stratified by annual MI volume and baseline % ticagrelor use

Copayment Intervention

- P2Y₁₂ inhibitor choice and duration of therapy determined by the treating physicians
 - Enrolled patients could be treated with any P2Y₁₂ inhibitor
- Intervention site patients provided a copayment voucher card for either a generic (clopidogrel) or brand (ticagrelor) P2Y₁₂ inhibitor
- No other interventions to improve adherence were given

ARTEMIS 🖾

Co-Primary Endpoints

- Non-persistence of $P2Y_{12}$ inhibitor therapy, defined as
 - % patients who reported ≥ 30 days gap in P2Y₁₂ inhibitor use within 1 year
- MACE (death, recurrent myocardial infarction, and stroke within 1 year)

Key Secondary Endpoints

- P2Y₁₂ inhibitor therapy selection at discharge
 - % of patients prescribed ticagrelor vs. clopidogrel vs. prasugrel
- Non-persistence by pharmacy fill
 - % patients with pharmacy fill supply gap ≥30 days
- Non-persistence by blood levels
 - % patients without drug metabolite in blood on random draw

ARTEMIS 🖾

- Because of the un-blinded cluster design, analyses were adjusted for baseline covariates using a propensity model
- Among patients discharged on clopidogrel or ticagrelor
 - Non-persistence of P2Y₁₂ inhibitor logistic regression model with generalized estimating equations to account for within hospital clustering
 - MACE Cox proportional hazards model with robust standard errors to account for within hospital clustering
- Intention to treat and as-treated (voucher use)

Enrollment Trend

ARTEMIS 🖾

Enrollment and Randomization

Hospital Characteristics

ARTEMIS 🖄

	Intervention N=135	Usual Care N=166	p
Bed size	369 (268, 516)	397 (262, 620)	0.30
Teaching hospital	22.2%	26.5%	0.36
Annual MI volume			0.70
Low (<400)	43.0%	45.2%	
High (≥400)	57.0%	54.8%	
Ticagrelor use before ARTEMIS			0.63
Low (<15%)	43.7%	41.0%	
High (≥15%)	56.3%	59.0%	
# of patients enrolled per site	37 (18, 66)	18 (7, 37)	<0.0001

Patient Demographic Characteristics

ARTEMIS 🖾

	Intervention N=6135	Usual Care N=3967	StdDiff
Age	62 (54, 70)	62 (54, 70)	0.00
Female	31.7%	32.4%	0.02
Non-white race	10.4%	13.9%	0.11
Private Insurance	63.0%	64.0%	0.02
Employed	46.7%	44.4%	0.08

Duke Clinical Research Institute

StdDiff (standardized difference) >0.10 denotes significant difference

Clinical Characteristics

ARTEMIS 🖄

	Intervention N=6135	Usual Care N=3967	StdDiff
STEMI	46.4%	45.2%	0.02
Prior MI	19.6%	21.7%	0.05
Prior CABG	10.7%	12.0%	0.04
Prior stroke/TIA	6.2%	7.5%	0.05
Peripheral artery disease	5.8%	7.1%	0.05
Diabetes	31.6%	34.0%	0.05
Creatinine clearance (ml/min)	71 (53, 90)	69 (52, 87)	0.04
Weight (kg)	89 (77, 103)	89 (76, 104)	0.01
Home aspirin	42.4%	44.6%	0.04
Home P2Y12 inhibitor	12.9%	16.5%	0.10
Multivessel disease	47.2%	45.2%	0.02
PCI during index MI	90.1%	87.6%	0.08

Duke Clinical Research Institute

StdDiff (standardized difference) >0.10 denotes significant difference

Discharge P2Y₁₂ Inhibitor Selection

Duke Clinical Research Institute

*absolute difference between intervention and usual care arms

Non-Persistence of P2Y₁₂ Inhibitor

ARTEMIS 🖾

	Intervention	Usual Care	р		OR (9	5% CI)
Primary Analysis						
Patient-Reported n=10,102	12.96%	16.21%	<0.0001	Unadjusted Adjusted	0.76 0.84	(0.65, 0.89) (0.72, 0.98)
Secondary Analyse	<u>es</u>					
Pharmacy Fills n=8,360	44.80%	53.71%	<0.0001	Unadjusted Adjusted	0.64 0.68	(0.57, 0.73) (0.60, 0.77)
Randomly-selected Blood Draws n=944	8.23%	12.35%	0.04	Unadjusted	0.64	(0.42. 0.98)

Major Adverse Cardiovascular Events

ARTEMIS 🖾

Duke Clinical Research Institute

Adjusted comparisons non-significant for each component

Non-Persistence of P2Y₁₂ Inhibitor As Treated Analysis

ARTEMIS 🖾

• 1,742 (28%) intervention arm patients did not use study voucher

As Treated* vs. Usual Care			
Intervention	Usual Ca	ire p	
9.95%	16.21%	~0.0001	
Unadjusted Adjusted OR	DR: 0.56 : 0.65	(0.47, 0.66) (0.55, 0.78)	

*as treated = voucher use

Major Adverse Cardiovascular Events As Treated Analysis

Duke Clinical Research Institute

*as treated = voucher use

ARTEMIS 🖾

- Patient-reported P2Y₁₂ persistence rates were high, reflecting the current emphasis on patient adherence education
- Imbalance in enrollment
 - Cluster randomized design intended to study clinician prescribing behavior but gave less incentive to enroll at control sites
 - Possible residual unmeasured confounding between clusters
- No perfect measure of drug persistence
 - Limitations to all measurement methods

Conclusions

- Copayment reduction significantly
 - Affected clinician choice of treatment
 - Improved persistence to treatment
- Despite increased evidence-based treatment, clinical outcomes were not significantly improved

Implications

ARTEMIS 🖾

 Why was copayment reduction alone not enough to change clinical outcomes?

- Targeted single drug only
- Modest co-pay differences and high baseline persistence
- Incomplete use of co-pay vouchers
- Significant albeit modest impact on persistence

 Broad-scale interventions likely needed to further improve medication persistence and patient outcomes

 Consider copayment reduction as part of a multi-pronged strategy to enhance medication persistence and outcomes

Acknowledgments

Coordinating Center Duke Clinical Research Institute

Tracy Y. Wang Principal Investigator

Eric D. Peterson Study Chair

Kevin J. Anstrom Faculty Statistician

Study Sponsor AstraZeneca

Naeem D. Khan Durgesh Bhandary

Duke Clinical Research Institute

Steering Committee

Christopher Cannon Brigham and Women's Hospital

Niteesh K. Choudhry Harvard School of Public Health

David J. Cohen Beth Israel Deaconess Medical Center

> Gregg C. Fonarow Ahmanson-UCLA

Timothy D. Henry Cedars Sinai Medical Center

Study Contributors 301 US Hospitals and PIs

Operational Leadership

ARTEMIS 🖾

Linda Davidson-Ray Project Leader

> Laura Webb Project Leader

Lisa A. Kaltenbach Statistician

Shannon Carr Site Management

Alexander C. Fanaroff Study Fellow

> Jacob A. Doll Study Fellow