Disclosure Statement of Financial Interest

- Funding for the study was provided by the Pulse medical imaging technology (Shanghai) Co., Ltd; the National Key Research and Development Program of China (Grant No. 2016YFC0100500); and the Natural Science Foundation of China (Grant No. 31500797 and 81570456)
- I, (Bo Xu) have no relevant conflicts of interest to disclose

Background

- Patients at high risk of having coronary stenosis are evaluated routinely by invasive coronary angiography
- Fractional flow reserve (FFR) is an increasingly often used method for lesion functional evaluation
- Studies demonstrated that routine use of FFR allowed reclassification of individual management in a large proportion of patients
- However, the need for interrogating the stenosis with a pressure wire, the cost of the wire, and the limitations associated with induction of hyperemia have restricted its widespread adoption

Quantitative Flow Ratio (QFR)

3D Reconstruction

Modified Frame Count

Without Inducing Hyperemia

QFR Validation: FAVOR Pilot Study

	fQFR ≤ 0.8	$c Q F R \leq 0.8$	aQFR ≤ 0.8	DS\% $\geq 50 \%$
Accuracy	$80(71-89)$	$86(78-93)$	$87(80-94)$	$65(55-76)$
Sensitivity	$67(46-84)$	$74(54-89)$	$78(58-91)$	$44(26-65)$
Specificity	$86(74-94)$	$91(81-97)$	$91(81-97)$	$79(66-89)$
PPV	$69(48-86)$	$80(59-93)$	$81(61-93)$	$50(29-71)$
NPV	$85(73-93)$	$88(77-95)$	$90(79-96)$	$75(62-85)$
LR+	$4.8(2.4-9.5)$	$8.4(3.6-20.1)$	$8.9(3.7-21.0)$	$2.1(1.1-4.1)$
LR-	$0.4(0.2-0.7)$	$0.3(0.1-0.5)$	$0.2(0.1-0.5)$	$0.7(0.5-1.0)$
AUC	$0.88(0.79-0.94)$	$0.92(0.85-0.97)$	$0.91(0.83-0.96)$	$0.72(0.62-0.82)$

- Good diagnostic accuracy for contrast-flow QFR (without inducing hyperemia);
- However, QFR analysis was performed in the core lab; QFR accuracy when performed online in the cath lab had not been properly examined to date.

Objectives

- To evaluate the diagnostic accuracy of online angiography-based QFR in identifying hemodynamically-significant coronary stenosis by using pressure wirebased FFR as the reference standard

FAVOR II China (N=308)

Prospective, multicenter clinical study (in a blinded fashion)

Major Inclusion: Age ≥ 18 years; stable, unstable angina; diameter stenosis between 30% and 90% in a vessel $\geq 2 \mathrm{~mm}$ by visual estimation

Major Exclusion: Myocardial infarction within 72 hours; severe heart failure (NYHA \geq III); ostial lesions, or main vessels with stenotic side branches downstream the interrogated lesion

Primary Endpoint: Diagnostic accuracy* of online QFR as compared with FFR.
Major Secondary Endpoint: Sensitivity^ and specificityll of online QFR as compared with online QCA, when using FFR as a reference standard.
*Diagnostic accuracy: defined as consistency ratio of QFR evaluated outcomes (≤ 0.8 or >0.8) with the reference standard FFR evaluated outcomes (≤ 0.8 or >0.8); ^Sensitivity: proportion of QFR ≤ 0.8 or QCA $\geq 50 \%$ in vessels with hemodynamically-significant stenosis as measured by FFR (FFR ≤ 0.8); "Specificity: proportion of QFR>0.8 or QCA<50\% in vessels without hemodynamically-significant stenosis as measured by FFR (FFR ≤ 0.8).

Statistical Assumptions

The study was powered for testing both primary and major secondary endpoint
For the primary endpoint:
$>$ Target value $=75 \%$
$>$ Estimated accuracy $=83 \%$
$>$ Two-sided type 1 error $=0.05$
277 patients with paired QFR and FFR would yield at least 90% power to achieve target goal
Assuming anticipated loss to analysis of 10\% due to failed QCA, QFR or FFR assessment, enrollment of 308 patients were required

For the major secondary endpoint:
> Assuming sensitivity and specificity was 0.74 and 0.91 for QFR, while 0.48 and 0.76 for QCA
> Two-sided type I error $=0.05$
308 patients would yield $>80 \%$ power to demonstrate superiority of QFR over QCA

Study Organization

Principal Investigator
 Co-Principal Investigator
 Data Management and Data Monitoring
 Angiographic Core Lab

Statistical Analysis

Sponsor

Shengshou Hu, MD
Bo Xu, MBBS and Shubin Qiao, MD

CCRF, Beijing, China

Medical Research and Biometrics Center,
National Center for Cardiovascular
Diseases, Beijing, China
Pulse Medical Imaging Technology (Shanghai) Co., Ltd

Sites and Investigators

Investigators

Qiao, and Bo Xu Tian
Chen
Lijun Guo

Shengshou Hu, Shubin

Xinkai Qu and Weiyi Fang

Yundai Chen and Feng
Junqing Yang and Jiyan
Hospital, City
Patients
Enrolled
Fu Wai Hospital, National Center for Cardiovascular
Diseases, Chinese Academy of Medical Sciences,140
Beijing, China
Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai, ChinaChinese PLA General Hospital, Beijing, China50
Guangdong General Hospital, Guangzhou, China 45
Peking University Third Hospital, Beijing, China 20

Study Flow Chart

Baseline Patient Demographics

	Patients $(\mathbf{N}=308)$
Age, years	61.3 ± 10.4
Women	26.3%
Diabetes Mellitus	27.9%
Hypertension	60.1%
Hyperlipidemia	45.1%
Current Smoker	28.2%
Family History of CAD	16.6%
Previous MI	15.6%
Previous PCI	21.1%
AMI within 1 Month	4.5%
Stable Angina	23.4%
Unstable Angina	61.0%
Left Ventricular Ejection Fraction, \%	63.4 ± 6.3

Vessel Characteristics

	Patients (N=308) Vessels (N=332)
Interrogated Vessels	
Left Anterior Descending Artery	55.7%
Diagonal Branch	0.6%
Left Circumflex Artery	14.8%
Obtuse Marginal Branch	1.5%
Ramus Intermediate	0.3%
Right Coronary Artery	26.2%
Posterior Descending Artery	0.3%
Posterolateral Branch	0.6%
Reference Vessel Diameter, mm	2.82 ± 0.56
Minimal Lumen Diameter, mm	1.51 ± 0.44
Diameter Stenosis, \%	46.5 ± 11.3
Lesion Length, mm	13.1 ± 6.4

Lesion/Procedural Characteristics

	Patients (N=308) Vessels (N=332)
Bifurcation Lesions	24.7%
Tortuous Vessels	14.2%
Moderate or Severe Calcified Lesions	18.4%
Thrombotic Lesions	0.3%
Tandem Lesions	46.3%
Online FFR Analysis	0.82 ± 0.12
FFR (Per Vessel)	34.2%
Vessels with FFR ≤ 0.80	32.4%
Vessels with $0.75 \leq$ FFR ≤ 0.85	7.2%
Patients with FFR Measurement in > 1 Vessel	4.36 ± 2.55

Correlation and Agreement of QFR and FFR (Online Analysis)

Primary Endpoint: Online Per-Vessel QFR Diagnostic Accuracy

Accuracy

Point Estimate: 92.7\% (304/328) 95\% Confidence Interval: 89.3\% to 95.3\%

Target Value
p Value 75\%
< 0.0001

Prespecified Target
Value $=75 \%$
Accuracy $=92.7 \%$

Prespecified Performance Goal Met

Diagnostic Accuracy of QFR in Different Interrogated Vessels

Interrogated Vessels	Accuracy	
LAD	$92.4(87.6,95.8)$	No. of Patients in Group
LCX	$96.4(87.5,99.6)$	184
RCA	$91.0(83.1,96.0)$	55
	Difference, \% (95\% CI)	p Value
LAD vs. LCX	$-4.0(-9.9,2.3)$	0.30
LAD vs. RCA	$1.4(-5.5,8.8)$	0.70
LCX vs. RCA	$5.4(-2.3,13.7)$	0.22

Diagnostic Consistency for Identifying Hemodynamically-Significant Stenosis by QFR and FFR

	FFR >0.8	FFR ≤ 0.8
QFR >0.8	198	6
QFR ≤ 0.8	18	106
	Difference Between QFR and FFR	
>0.05	$31.4 \%(103 / 328)$	
>0.1	$8.5 \%(28 / 328)$	
LAD	$10.3 \%(19 / 184)$	
LCX	$5.5 \%(3 / 55)$	
RCA	$6.7 \%(6 / 89)$	

Online Per-Patient Diagnostic Accuracy of QFR

Accuracy

Point Estimate: 92.4\% (281/304) 95\% Confidence Interval: 88.9\% to 95.1\%

Prespecified Target
Value $=75 \%$

Target Value p Value 75\%
< 0.0001

Accuracy		
Point Estimate: 92.4\% (281/304)	Target Value	p Value
95\% Confidence Interval: 88.9% to 95.1%	75%	<0.0001

$$
\text { Accuracy }=92.4 \%
$$

Prespecified Performance Goal Met

Diagnostic Performance of QFR and QCA (Online Analysis)

	QFR ≤ 0.8	Diameter Stenosis by $\text { QCA } \geq 50 \%$	Difference $95 \% \text { (CI) }$	$\begin{gathered} p \\ \text { Value } \end{gathered}$
Accuracy, \%	92.7 (89.3, 95.3)	59.6 (54.1, 65.0)	34.9 (28.3, 41.5)	< 0.001
Sensitivity, \%	94.6 (88.7, 98.0)	62.5 (52.9, 71.5)	32.0 (21.0, 43.1)	< 0.001
Specificity, \%	91.7 (87.1, 95.0)	58.1 (51.2, 64.8)	36.1 (27.9, 44.3)	< 0.001
PPV, \%	85.5 (78.0, 91.2)	43.8 (35.9, 51.8)	42.0 (31.4, 52.7)	< 0.001
NPV, \%	97.1 (93.7, 98.9)	74.9 (67.6, 81.2)	24.4 (15.6, 33.2)	<0.001
+ LR	11.4 (7.1, 17.0)	1.49 (1.21, 1.85)	-	-
- LR	0.06 (0.03, 0.13)	0.65 (0.50, 0.84)	-	-

Diagnostic Performance of QFR and QCA (Offline Analysis)

		Diameter		
QFR ≤ 0.8	Stenosis by QCA $\geq 50 \%$	Difference $95 \%(C I)$	Value	
Accuracy, \%	$93.3(90.0,95.7)$	$64.0(58.6,69.2)$	$29.9(23.2,36.7)$	<0.001
Sensitivity, \%	$94.1(88.3,97.6)$	$49.6(41.1,59.7)$	$44.4(33.0,55.7)$	<0.001
Specificity, \%	$92.8(88.4,95.9)$	$72.2(65.7,78.2)$	$21.3(13.2,29.4)$	<0.001
PPV, \%	$88.2(81.3,93.2)$	$50.4(41.0,59.8)$	$37.0(25.4,48.6)$	<0.001
NPV, \%	$96.5(93.0,98.6)$	$71.6(65.0,77.5)$	$26.8(18.5,35.0)$	<0.001
+ LR	$13.1(8.04,21.0)$	$1.81(1.36,2.40)$	-	-
- LR	$0.06(0.03,0.13)$	$0.69(0.57,0.84)$		-

Receiver Operating Curves for the Discrimination of Functionally Significant Stenosis (Online Analysis)

Diagnostic Performance of QFR and QCA

 in Subgroup of DS\% [40\% - 80\%] by Visual Estimation| | | Diameter | | |
| :--- | :---: | :---: | :---: | :---: |
| QFR ≤ 0.8 | Stenosis by
 QCA $\geq 50 \%$ | Difference
 $95 \%(C I)$ | Value | |
| | | p | | |
| Accuracy, \% | $92.3(88.5,95.2)$ | $58.5(52.4,64.4)$ | $36.6(29.2,44.1)$ | <0.001 |
| Sensitivity, \% | $92.2(83.8,97.1)$ | $54.5(42.8,65.9)$ | $44.1(28.4,59.9)$ | <0.001 |
| Specificity, \% | $92.3(87.7,95.7)$ | $60.0(52.8,66.9)$ | $35.1(26.4,43.8)$ | <0.001 |
| PPV, \% | $82.6(72.9,89.9)$ | $35.0(26.5,44.2)$ | $50.5(37.0,64.1)$ | <0.001 |
| NPV, \% | $96.8(93.1,98.8)$ | $77.0(69.5,83.4)$ | $22.9(13.8,32.0)$ | <0.001 |
| + LR | $12.0(7.34,20.0)$ | $1.36(1.04,1.78)$ | - | - |
| - LR | $0.08(0.04,0.18)$ | $0.76(0.58,0.99)$ | | - |

Diagnostic Accuracy of QFR in the FFR "Grey Zone" Subgroup

$$
0.75 \leq F F R \leq 0.85 \quad F F R<0.75 \text { or } F F R>0.85
$$

Estimate, \% $(95 \% \mathrm{Cl})$	No. of Vessels in Group	Estimate, \% $(95 \% \mathrm{Cl})$	No. of Vessels in Group
86.0		95.9	221
$(77.9,91.9)$	107	$(92.4,98.1)$	

For the subgroup with FFR between 0.75 and 0.85 where a small numerical difference between QFR and FFR can lead to clinical discordance, QFR still had high diagnostic accuracy (86.0\% [95\% CI: 77.9\% to 91.9\%])

Limitations

- Not all the vessels were interrogated for the enrolled patients: the vessels with diameter stenosis below 30% or above 90% were not assessed as performing physiological assessment in such lesions was left unnecessary. Side branches of bifurcation lesions with medina type $1,1,1$ or $1,0,1$ were not assessed. Generalizability of QFR to the side branches of coronary bifurcation lesions still requires further investigation.
- Although the accuracy of QFR was high in the present study, there was still numerical difference between QFR and FFR. Nevertheless, for the subgroup with FFR between 0.75 and 0.85 where a small numerical difference between QFR and FFR can lead to clinical discordance, QFR still had high diagnostic accuracy.
- Additionally, there were 15.6% patients with previous myocardial infarction, which might have increased the possibility of inaccurate physiology measurements but also reflects a standard clinical population.
- As clinical decisions in the study population were based on FFR measurements, it was not possible to directly evaluate clinical outcome by a QFR based diagnostic strategy. Randomized trials comparing clinical outcomes after QFR based diagnostic strategies and standard diagnostic strategies are warranted.

Conclusions

- The FAVOR II China study met its prespecified primary performance goal for the level of diagnostic accuracy of QFR in identifying hemodynamically-significant coronary stenosis.
- It demonstrates clinical utility of QFR for use in diagnostic catheterization laboratories and QFR bears the potential of improving angiographybased identification of functionally-significant stenosis during coronary angiography.

