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photoplethysmographical biosignals.

� To validate the estimation of BP using a

CLB in accordance with the latest

wearable device standard issued by the

Institute of Electrical and Electronics

Engineers (IEEE 1708-2014).

� We found that CLB is technically

comparable to the ordinary cuff-based

BP-measuring device.

� CLB will apply for wearable health care

monitoring device that may change

landscape of BP measurements in terms

of continuous and stress-free monitoring.
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Ordinary cuff-based blood pressure–monitoring devices remain a technical limitation that disturbs

activities of daily life. Here we report a novel system for the cuff-less blood pressure estimation (CLB)

that requires only 1 sensor for photoplethysmography. The present study is the first report to validate and

assess the clinical application of the CLB in accordance with the latest wearable device standard (issued by

the Institute of Electrical and Electronics Engineers, standard 1708-2014). Our CLB is expected to

offer a flexible and wearable device that permits blood pressure monitoring in more continuous and

stress-free settings. (J Am Coll Cardiol Basic Trans Science 2017;2:631–42) © 2017 The Authors. Published

by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
S ince the invention of a rubber cuff for
the compression of the brachial artery
by Dr. Riva-Rocci in 1896 (1) and the

development of the auscultatory method of
blood pressure (BP) reading by Dr. Korotkoff
in 1905 (2), cuff-based blood pressure
measurement (CB) has been used as the
gold standard method for blood pressure
monitoring (3). The widespread use of the
CB has inestimably contributed to the clin-
ical management of BP; however, the decline
in the use of mercury sphygmomanometers
due to environmental contamination has
led to the development of various alternatives (4).
Since the 1970s, oscillometric devices have become
popular because they can be used to take multiple
and automated measurements (5). However, the
oscillometric method still requires a cuff to compress
the artery for BP measurement, which can disturb
daily activities, particularly during ambulatory blood
pressure monitoring (ABPM) (6).
SEE PAGE 643
The most recent guidelines for the care of
hypertension have emphasized home BP monitoring
and ABPM (7,8). However, an ordinary CB allows only
a “snapshot” or intermittent assessment of BP, and
the inflation of a cuff can induce discomfort, espe-
cially during ABPM, which often affects the BP data
(6,9) and disturbs examinees’ daily activities (6).
Many technical innovations have been developed for
BP monitoring, such as BP estimation sensors, mobile
RATION. All other authors have reported that they have no

test they are in compliance with human studies committe

d Food and Drug Administration guidelines, including patien
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apps, and wearable devices (10). Among these, a BP
sensor measuring pulse transit time (i.e., the time
interval from left ventricular contraction to pulse
waveform acquisition at the extremity) is one of the
most promising candidates (11). However, no system
has been developed to enable BP estimation and
continuous monitoring by a single sensor that has
comparable fidelity to the CB (12).

The goal of the present study was to develop
a new device for recording BP without a cuff. We
report a novel system for cuff-less blood pressure
estimation (CLB) that requires only 1 sensor for
photoplethysmogram (PTG). Our original algorithm
enables this simple system and expands the possi-
bility of measuring BP comfortably and flexibly in
various settings. This study is the first report to
validate the CLB with a single sensor and to assess the
clinical application of the CLB in accordance with
the latest wearable device standard issued by the
Institute of Electrical and Electronics Engineers
(IEEE), IEEE 1708-2014 (13).

METHODS

STUDY POPULATION. This study conforms to the
principles outlined in the Declaration of Helsinki,
and the Ethical Committee of Nagoya University
School of Medicine approved this study. All exam-
inees provided informed consent before the
measurements were conducted. Written informed
consent was obtained from all subjects. A summary of
the enrolled participants is shown in Table 1, and their
distributions of sex and age are summarized in
relationships relevant to the contents of this paper

es and animal welfare regulations of the authors’

t consent where appropriate. For more information,

017, accepted July 6, 2017.
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TABLE 1 Data Overview for BP Validation Tests (N ¼ 172)

Male, % 115 (66.9)

Age, yrs 47.6 � 17.3

Hypertension (%)* 53 (30.8)

Total data number 932

Static 386

BP rise 182

BP lowering 102

Reproducibility 262

BP differences, mm Hg SBP DBP

Total �0.4 � 8.0 [6.1] �1.5 � 6.4 [4.9]

Static 0.3 � 6.6 [5.2] �1.0 � 5.4 [4.1]

BP rise �2.1 � 7.5 [6.0] �4.0 � 5.6 [5.3]

BP lowering 1.0 � 10.2 [8.0] �0.6 � 7.7 [5.8]

Reproducibility �0.8 � 9.2 [6.8] �0.9 � 7.3 [5.5]

PR, beats/min

Total 71.4 � 10.3

Static 68.7 � 9.6

BP rise 75.9 � 10.0

BP lowering 75.0 � 12.6

Reproducibility 71.0 � 8.8

Values are mean � SD, n (%), or mean � SD [MAD†]. *Participant who has been diagnosed and
treated with antihypertensive medication. †Mean absolute difference (MAD) between the blood
pressure (BP) value of the test device (CLB) and the reference device (CB), the cuff-wearing
sphygmomanometer. According to the Institute of Electrical and Electronics Engineers stan-
dard, the accuracy of the cuff-less BP devise was assessed by the sufficient number of systolic
blood pressure (SBP) rise and decline in the range of 0 to 30 mm Hg. The accuracy limit of BP
estimation was determined by the MAD of BP (<7 mm Hg difference between the CLB and the
reference device. DBP ¼ diastolic blood pressure; PR ¼ pulse rate recorded by CLB.
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Supplemental Figure 1A. Subjects with arrhythmias or
who were pregnant were excluded.

PRINCIPLES AND PROCEDURE FOR BP ESTIMATION

BY CLB. Our novel CLB uses only PTG to estimate BP
(Figure 1A, Supplemental Figure 1B). Each examinee
wore a sensor measuring PTG on his or her right index
finger. The PTG sensor was equipped with a light-
emitting diode (940-nm wavelength) on the side
facing the nail and a photodetector on the other side
to monitor changes in peripheral blood volume (14).
Changes in light absorption were monitored by the
photodetector at a sampling frequency of 200 Hz with
a resolution of 12 bits. Analog PTG data obtained
during 5 contiguous pulse wave intervals were digi-
talized and averaged, followed by the calculation
estimated by using a specific algorithm (Figure 1B)
(15,16). As a reference, BP was simultaneously
measured by CB (both by auscultatory [Korotkoff] and
electronic [oscillometric] sphygmomanometers) on
the left arm (Figure 1C). A bladder-type cuff
(8.6 inches wide and 12.6 inches long) was placed
on the left upper arm of each participant, and BP
readings were taken at 30-s intervals by using an
oscillometric method (UA-1020G, A&D Company,
Tokyo, Japan) and an auscultatory method. To obtain
the auscultatory BP values, a microphone was
attached to the left upper arm to capture the
Korotkoff sounds of the brachial artery on the left
side. The recorded Korotkoff sounds were digitalized
by using a data logger (midi LOGGER GL900,
Graphtec, Yokohama, Japan). Calibration of CLB
values by using CB was performed 3 times at 60-s
intervals before the validation test (Figure 1E).

VALIDATIONOF CLB ANDTHE IEEE STANDARD. The IEEE
has issued a validation guideline (IEEE 1708-2014) for a
wearable or cuff-less BP estimating device (13). IEEE
1708-2014 reflects the established clinical guidelines
for BP monitoring issued by the Association for the
Advancement of Medical Instrumentation (AAMI) (17)
and the European Society of Hypertension (18).
In brief, this guideline describes the fidelity
requirements that are determined by the mean
absolute difference (MAD) of BP between values esti-
mated by using a test device (i.e., CLB) and those
measured by using an ordinary CB under 3 different
conditions. An overview of the study protocol
is displayed in Figure 1B and in Supplemental
Figure 1C. The illustrated procedures used are shown
in Figures 1C to 1E. The experimental criteria and
conditions are summarized in Supplemental Figure 1D.

To validate the CLB according to IEEE 1708-2014
(13), BP validation was performed under 3 different
conditions: static (resting BP), dynamic (BP rising and
falling), and reproducible (repeating BP estimation
after a 1-month interval) (Figure 1E). BP rise was pro-
voked by a simple leg stretch and clamp (Figure 1D).
After the calibration, 3 pairs of BP measurements
were taken for each subject using both CLB and CB
simultaneously, as described in the previous section.

SCORING OF THE IMPACT OF ABPM ON SLEEP

QUALITY. Thirty-five participants were subjected to
bedtime BP monitoring by either CB (i.e., ABPM)
(Study 1) or CLB (Study 2) on 2 separate calendar days.
Between Study 1 and Study 2, 2-month intervals were
set to avoid any interference that might occur
by wearing order, such as the lack of sleep in a
previous night induced by CB. Immediately after the
device was detached, each examinee completed
the sleep quality questionnaire. A questionnaire
about sleep quality was used to screen for discomfort
during BP monitoring by standard ABPM or CLB.
Sleep quality was rated on a scale using 0, 1, and 2.
Fair sleep quality during BP monitoring was rated as
2; mildly disturbed sleep was rated as 1; and if sleep
quality deteriorated or the subject was unable to
sleep, a score of 0 was recorded.

To address the impact of BP-monitoring device
on sleep disturbance in a more objective fashion,
electrocardiogram (ECG) data were simultaneously

https://doi.org/10.1016/j.jacbts.2017.07.015
https://doi.org/10.1016/j.jacbts.2017.07.015
https://doi.org/10.1016/j.jacbts.2017.07.015
https://doi.org/10.1016/j.jacbts.2017.07.015
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FIGURE 1 Circuit Diagram for the PW Sensor and BP Estimation System

(A) The light-emitting diode (LED) emits light with a wavelength of 940 nm. The light penetrates the finger and arrives at the photo detector

(PD). The PDdetects bloodflow changes, which correspond to the natural pulsation of the bloodflow. Baselinefluctuation is removed by a high-

pass filter (HPF) with a cutoff frequency of 0.3 Hz, and noise is removed by a low-pass filter (LPF) with a cutoff frequency of 30 Hz. The output

signal is digitized at a sampling frequency of 200 Hz and a resolution of 12 bits. (B to E) Schematic diagram (B and D) and illustration (C and E)

used to develop theBP estimation algorithm. *Leg clamp (E). **Arithmetic calculation. A total of 887participantswere enrolled (a histogramof

participant age and gender is displayed in Supplemental Figure 1A). The obtained pulse waves were analyzed, and feature parameters were

extracted and collected. A database of feature parameters was analyzed to generate a BP estimation algorithm. (D) Validation protocol based on

Institute of Electrical and Electronics Engineers (IEEE) standard 1708-2014. BP data were obtained by using cuff-less BP estimation (CLB) with

simultaneous recording by a cuff-type sphygmomanometer (CB) as a reference conducted at the time point indicated by the closed circle.

Calibration was performed at the beginning of each measurement using a cuff-type sphygmomanometer to take 3 measurements at 60-s

intervals. After calibration, simultaneous BP monitoring was performed by using CLB and CB under (C) static conditions followed by dynamic

measurements using (E) leg stretching and a clamp. ADC ¼ analog to digital converter; Amp ¼ amplifier; PC ¼ personal computer.
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TABLE 2 Intra-Device Repeatability of BP Measurement by

CLB and CB

ICC (95% CI) Mean Difference � 2 SDs

Total (N ¼ 932)

SBP 0.918 (0.907–0.927) �0.41 � 16.1

DBP 0.842 (0.812–0.866) �1.53 � 12.8

Static (n ¼ 386)

SBP 0.950 (0.940–0.959) 0.26 � 13.1

DBP 0.903 (0.880–0.921) �1.01 � 10.8

BP rise (n ¼ 182)

SBP 0.920 (0.889–0.942) �2.07 � 14.9

DBP 0.805 (0.514–0.902) �4.04 � 11.2

BP lowering (n ¼ 102)

SBP 0.856 (0.794–0.900) 1.00 � 20.3

DBP 0.784 (0.697–0.875) �0.60 � 15.3

Reproducibility (n ¼ 262)

SBP 0.844 (0.805–0.849) �0.77 � 18.3

DBP 0.752 (0.694–0.800) �0.90 � 14.5

The reproducibility of the measurements, the ICC and its 95% confidence interval
(CI) value between the BP value of test device (CLB) and the reference device
(CB; cuff-wearing sphygmomanometer), were calculated. In general, an ICC >0.8
represents good repeatability, and an ICC >0.9 represents excellent repeatability
of measurements.

ICC ¼ intraclass correlation coefficient; other abbreviations as in Table 1.
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obtained and analyzed in terms of the changes in
heart rate (HR), the high-frequency (HF) component
of HR variability, and the ratio of the low-frequency
(LF) component of HR variability and HF (LF/HF).
STATISTICAL ANALYSES. All statistical analyses
were performed by using computer software (IBMSPSS
version 24.0 [IBM SPSS Statistics, IBM Corporation,
Armonk, New York] and JMP Pro 11 [SAS Institute, Inc.,
Cary, North Carolina]). To evaluate the reproducibility
of the measurements, the intraclass correlation
coefficient (ICC) and its 95% confidence intervals (CIs)
were calculated (Table 2). In general, an ICC >0.8
represents good repeatability of measurements, and
an ICC >0.9 represents excellent repeatability.

To address the agreement (i.e., interchangeability)
of a new measurement technique with an established
one, the Bland-Altman plot is useful because direct
comparison of the measured value or correlation
coefficient analysis has a limitation (19,20). The
Bland-Altman plot statistically determines whether
cuff-less estimation is sufficient to replace ordinary
CB. Agreement between the 2 distinct devices was
assessed by the data distribution pattern of SDs
plotted along the ordinate, with the mean BP value
plotted along the abscissa (19). The agreement limits
were defined by the mean � 2 SDs of the measured
differences. The McNemar test was used to determine
the existence of differences in a dichotomous variable
between 2 related groups. Values of p < 0.05 were
considered statistically significant.
RESULTS

CORRELATION OF BP VALUES BETWEEN THE CLB

ESTIMATION AND CUFF-TYPE AUSCULTATORY

MEASUREMENT DURING STATIC, DYNAMIC, AND

1-MONTH FOLLOW-UP CONDITIONS. Illustrated
images of the CLB with a PTG sensor and the principle
and algorithm used to estimate BP are detailed by
flowcharts (Figure 1, Supplemental Figure 1C).
In accordance with IEEE 1708-2014, we conducted a
test to validate the CLB by simultaneously monitoring
BP with the CLB and with a cuff-type auscultatory
device under 3 different conditions: static, dynamic,
and 1-month follow-up (Figure 1E). The correlation
coefficients of systolic blood pressure (SBP) data
between the CLB and the CB were highly significant
in SBP (Figures 2A, 2C, and 2E). MAD values
were <8 mm Hg (MAD; 6.1 for SBP), suggesting that
the BP values measured by using CLB meet the IEEE
1708-2014 standard.

To assess the reproducibility of the measurements,
the ICC and its 95% CIs were calculated (Table 2).
The ICC indicated good repeatability at all conditions
(0.918 for overall SBP, 0.950 for static SBP, and 0.920
for BP rise [SBP]). In the clinical setting, a new mea-
surement technique (in this paper, CLB) is needed to
determine whether they agree sufficiently for the new
to replace the old one, and the Bland-Altman plot is
widely used to address the agreement (19,21). The
Bland-Altman plot analysis (Figures 2B, 2D, and 2F)
consistently indicated that the CLB method is
sufficient to replace the cuff-based device method
(the mean difference and 95% limits of agreement of
CLB for the reference device [in mean � 2 SD]
were �0.4 � 16.1 in SBP). Correlation and the Bland-
Altman plot analysis for diastolic blood pressure
(DBP) were highly credible under various conditions
(Supplemental Figure 2).

CORRELATION OF BP BETWEEN CLB ESTIMATION AND

CUFF-TYPE DEVICE ESTIMATIONS UNDER FALLING BP

CONDITIONS. The IEEE issued a validity requirement
for CLB devices by indicating requirements for
reproducibility and for measuring static BP, rising BP,
and falling BP in the ranges of 0 to 15 and 15 to 30mmHg
(13). To verify the precision of BP estimation by the CLB
under falling BP conditions, we simultaneously
recorded from the CLB and the CB during coronary
angiography after nitroglycerin administration
(Figure 3A and Supplemental Table 1 for baseline
characteristics of participants [n ¼ 29]). As expected,
the intracoronary administration of nitroglycerin
(1.5 mg) (protocol is displayed in Figure 3A)
induced a decrease in BP of approximately 30 mm Hg

https://doi.org/10.1016/j.jacbts.2017.07.015
https://doi.org/10.1016/j.jacbts.2017.07.015
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FIGURE 2 Validation and Reproducibility of CLB According to the IEEE 1708-2014 Standard Under Static and Dynamic Conditions

Cumulative systolic blood pressure (SBP) dataset was obtained under (A and B) static (n ¼ 386), (C and D) BP rise (n ¼ 182), and (E)

reproducible (retaking BP measurements on the same examinee 1 month later, n ¼ 262) conditions. Linear correlation analysis was used to

assess the association between the 2 measures. The correlation coefficient is given by r. The results of analyzing diastolic BP data are shown in

Supplemental Figure 2. To assess the agreement of BP data measured by using CLB with those recorded by using a cuff-based sphygmo-

manometer, all BP data were assessed by using a Bland-Altman plot. Scatter plots of difference in SBP between CB and CLB under (B) static

conditions, (D) dynamic conditions, and (F) for reproducibility assessment are shown. The average difference in SBP between the CLB and the

CB is indicated by solid lines. Dotted lines indicate the 95% limits of agreement (mean � 2 SDs of the difference in SBP) between the CB

and the CLB. The agreement limits of SBP were: (in mean � 2 SDs): (B) static, �0.3 � 13.2; (D) BP rise, �2.1 � 15.0; and (F) reproducibility,

�0.8 � 18.4. Abbreviations as in Figure 1.
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FIGURE 3 Validation of the Cuff-less BP Monitoring Device Under Decreasing BP Conditions During Coronary Arterial Angiography

To address the precision requirements outlined by IEEE 1708-2014 for decreasing BP, we conducted simultaneous BP recording using CLB and a

standard CB (A). Image of the recording system used during coronary angiography is shown in the left panel in A. (B)Representative recording of

changes in intra-arterial BP during coronary angiography (B). Intracoronary arterial administration of nitroglycerin (1.5 mg/bolus shot) reduced

arterial BP by >15 mm Hg in accordance with the validation criteria described in IEEE 1708-2014. (C) Typical results from the simultaneous BP

recordingsofCLB (red line)andCB (blue line). (DandE)CorrelationandagreementofSBPdatameasuredbyusingCBandCLB.AgreementofCLB

withCBwasanalyzedbyusingaBland-Altmanplot (E)during coronary arterial angiography.Averagedifference inSBPbetween theCLBand theCB

is indicated by the solid line. The 95% limits of agreement (mean� 2 SDs of the difference) between CLB and CB are indicated by dotted lines. The

agreement limit for SBP was 1.00 � 20.3. Assessments of DBP are shown in Supplemental Figure 2. Abbreviations as in Figure 1.
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FIGURE 4 Effect of Ambulatory BP Measurement on Sleep Quality

Continued on the next page
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(Figures 3B and 3C). Despite the rapid response occur-
ring over a few minutes, the CLB measurements were
highly correlated with the changes in BP (R ¼ 0.86,
p < 0.001 for SBP [Figure 3D]; R ¼ 0.78, p < 0.0001, for
DBP [Supplemental Figure 2G]) and exhibited suffi-
cient agreement (agreement limit of 1.0 � 20.3 for SBP
[Figure 3E]: �0.6 � 15.3 for DBP [Supplemental
Figure 2H]). All BP estimation data at the phase of
static, BP rise, BP lowering, and 1 month internal study
were plotted together to summarize and verify the
precision of the cuff-less measurement independently
of BP variability in Supplemental Figure 3.

To address whether CLB sensitivity may be altered
in response to these dynamic BP changes, the BP
distribution patterns measured by CB and CLB were
compared by using a histogram. In SBP, the BP dis-
tribution pattern appeared identical to that measured
by CB under independent recording conditions
(Supplemental Figures 4A to 4C). In contrast, the
histogram of DBP from CLB was not identical to
that measured by CB under dynamic conditions
(i.e., rising and falling BP).

EFFECTS OF THE CLB AND ORDINARY ABPM ON

SLEEP QUALITY. One of the expected advantages of
the CLB is its use in the continuous recording of BP
variability (6). We therefore conducted a pilot study
to compare the CLB and cuff-type ABPM during sleep.
Thirty-five participants (Supplemental Table 1) were
subjected to BP monitoring during sleep using an
ordinary automated CB (i.e., ABPM; Study 1). The
next morning, they scored their discomfort and sleep
quality using a simple questionnaire (details noted in
the Methods section). A second study using CLB was
performed on a separate calendar day, after an
interval of >2 months (Figure 4A). There were no
differences in the mean SBP or DBP measurements
between the 2 devices (Supplemental Figure 5A). The
questionnaire revealed that >70% of participants felt
FIGURE 4 Continued

The effect of BP measurement during sleep was evaluated in terms of di

physiological parameters (heart rate [HR], high-frequency [HF], and low

subjected to a bedtime BP monitoring study using standard ambulatory B

examinees were subjected to bedtime BP monitoring using the CLB (Stud

was performed after a long interval. There were no significant differences

(Supplemental Figure 5A). (B) The effects on sleep quality of standard ABP

and CLB on the sleep quality of 35 participants was assessed using rating

quality during BP monitoring. A score of 2 (white area) indicates fair or u

mildly disturbed by BPmeasurement; and a score of 0 (black area) indicate

McNemar test. (C to F) Changes in physiological parameters. To assess th

Typical recordings of HR, HF, and LF/HF during (C) Study 1 and (D) Study 2

(Study 1, blue line) and by CLB (Study 2, red line) are displayed. Themean H

after going to bed (F), presumably indicating the time to sleep onset. Ab
uncomfortable when wearing an ordinary cuff-type
ABPM (Figure 4B), and this rate was significantly
reduced when wearing a CLB, suggesting that sleep
quality was significantly preserved during overnight
BP monitoring with a CLB.

To address the objective impact of CLB on sleep
quality, we measured HR variability (Figures 4C to 4E)
by using the ECG data simultaneously obtained
from the CLB device. These variables were measured
in terms of the changes in HR, the HF component of HR
variability, and the ratio of the LF component of
HR variability and HF (i.e., LF/HF). Notably, HR, HF,
and LF/HF were significantly lower in the CLB
group exclusively in the first hour after going to bed
(i.e., the time to onset of sleep). In contrast, there
were no significant differences in HR or the LF/HF
ratio during the total duration of sleep (8 h)
(Supplemental Figures 5B and 5C).

DISCUSSION

Following the accumulating clinical evidence (22,23),
greater attention has been paid to BP management,
resulting in an increased need for ambulatory BP
monitoring (12). Experts have emphasized the
clinical significance of BP recording at home as a
surrogate for the prevention of cardiovascular events
in patients with hypertension (12,24). To record BP at
home, CB is the most popular method, but it requires
the use of a cuff that limits the self-recording of BP.
In the present study, on the basis of innovative
sensor assemblies and an algorithm, CLB demon-
strated high precision and agreement with standard
CB through the validation of BP measurements under
static and dynamic conditions (Figures 1 to 3).
We further certified that the CLB met the validation
and reproducibility criteria through follow-up mea-
surements (Figures 2E and 2F).
scomfort using (B) a questionnaire about sleep quality and (C to F)

-frequency [LF]/HF). (A) Examinees were randomly assigned and

P monitoring (ABPM) (Study 1). More than 2 months later, the same

y 2). To avoid any bias resulting from device order, the second study

in the mean SBP or DBP recorded by using either of these devices

M and CLB were compared with a questionnaire. The effect of ABPM

s provided on a scale of 0 to 2. A higher score indicates better sleep

sual sleep quality; a score of 1 (gray area) indicates sleep that was

s sleep that was significantly disturbed. P<0.001 according to the

e effect of a BP cuff on sleep quality, HR variability was analyzed.

are shown. (E) Time course of changes in mean HR during sleep by CB

Rwas significantly lower when using CLB (line) during the first hour

breviations as in Figure 1.
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Interestingly, the CLB exhibited high fidelity in
response to rapid changes in BP, both increases
(Figure 2) and decreases (Figure 3), that were recorded
during the intracoronary injection of nitroglycerin. We
carefully reviewed these BP data by comparing histo-
grams to assess the agreement of CB and CLB and to
visualize the differences in the distribution patterns of
the recorded BP data (Supplemental Figure 4). The
histograms showed high consistency between CB and
CLB, except for DBP under dynamic conditions. Pre-
vious reports have consistently reported similar evi-
dence that exercise alters the relationship between
pulse transit time and arterial blood pressure (25),
which is more sensitive to the case of peripheral
measurement of DBP than to the measurement of SBP
by pulse transit time (25,26). This alteration is believed
to result from changes in the correlation between
pulse transit time (i.e., pulse wave velocity) and
arterial wall distensibility in response to exercise
(26,27). To overcome this physiological limitation,
further improvement in the CLB is necessary.

To conduct validation tests, we devised original
protocols that produce sufficient changes in BP to
meet the most recent guidelines for wearable devices
used for BP monitoring issued by the IEEE (13). To
date, the AAMI (17), the European Society of Hyper-
tension (18), and the British Hypertension Society (28)
have issued clinical recommendations for validating a
cuff-type automated BP-monitoring device (18,29).
The IEEE guideline (13) is the most recently published
and complies with the previous guidelines. More
specifically, an AAMI position paper recommend
criteria to follow when comparing any new automatic
device versus the cuff-based auscultatory
method: average differences no >5 mm Hg and
SDs no >8 mm Hg in groups of no fewer than 85
subjects (5). Addressing the AAMI standard, all the
data from the present study met these criteria for
average difference, SDs, and sample number.

Regardless of device features, BP measurements
are easily affected by various conditions, including
environmental factors, such as ambient temperature,
exercise, and body posture (30,31). Therefore, to
validate the accuracy of any BP-reading device, a
universal standard protocol is essential. Technical
innovation in the field of wearable devices increases
the practical demands for a validation protocol for
these new modalities. Surprisingly, there is no
universal standard for calibrating oscillometric
BP-reading devices, which have become more
popular worldwide than mercury manometers (5,32).
The present study sheds light on the critical gap
between technical innovation and practical demands
for the validation of clinical BP.
Various attempts have been made to estimate BP
by using a pulse waveform; however, unsolved crit-
ical issues of low sensitivity that demand the use of
supplementary biosignals, such as an ECG, remain
(15,33). Various attempts have been made to develop
clinically relevant cuff-free devices for BP estimation,
and previous reports have indicated the pitfalls and
limitations associated with these devices (11,12,33).
One such limitation is calibration. To convert the PTG
signal into BP, calibration using CB is unavoidable.
We are not yet free from the cuff, and our device is
therefore termed “cuff-less,” not “cuff-free.” How-
ever, our CLB has the advantage of using a single
sensor for BP recording, unlike previous devices that
require multiple sensors (15). For cuff-less BP moni-
toring to be user-friendly (11), the use of multiple
sensors should not limit portability or flexibility.
Gesche et al. (33) showed that BP estimation using
PTG and ECG is regarded as more convenient and less
costly because this method requires only an estima-
tion algorithm, ECG, and a finger PTG sensor (33).
More recently, a Taiwanese company has developed a
cuff-less BP reading device that is already commer-
cially available (34). Notably, compared with our de-
vice that requires only a PTG signal for BP estimation,
this apparatus requires 2 signals, representing ECG
and PTG data, for BP measurement. We preliminarily
compared our CLB with this 2-signal-based cuff-less
device. Our CLB exhibits higher sensitivity (Hiroshi
Yamakita, unpublished observation, March 24, 2017;
MAD, 3.8 mm Hg for SBP and 4.6 mm Hg for DBP
measured by our CLB, n ¼ 23; MAD, 16.0 mm Hg
for SBP and 7.3 mm Hg for DBP measured by the
counterpart, n ¼ 23).

CONCLUSIONS

We have developed a novel BP-monitoring sensor
using innovative digital technology. Although our
device has yet to overcome the requirement for
pre-calibration using CB, our study shows the high
precision and great advantage of CLB as a paradigm
shift in BP monitoring in the digital health era.
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PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: Cuff-

based BPmeasurement has been the gold standard for the

past 120 years. To prevent cardiovascular events, BP

monitoring is essential. The most recent clinical guidelines

for the care of hypertension have emphasized home BP

monitoring and ABPM. However, current standard devices

for BP recording still have several hurdles for ambulatory

BP monitoring due to the cuff, which causes patient

discomfort and disturbs examinees’ daily activities.

TRANSLATIONAL OUTLOOK: The CLB is technically

comparable to standard cuff-based devices and provides

various advantages for BP recording, such as more

comfortable monitoring during a variety of life activities.

CLB enables patients to share more accurate and reliable

data of ambulatory BP monitoring with their physicians.

Collectively, CLB is expected to lower the incidence of

cardiovascular events by collecting BP data that are un-

measurable by current diagnostic modalities.
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